martes, 19 de diciembre de 2017
domingo, 3 de diciembre de 2017
Autoevaluación por parejas
¿Qué te ha parecido el examen por parejas?.
La verdad es que me ha parecido una buena manera de aprender de mis errores, es decir, gracias a esta prueba me doy cuenta de que tengo fallos en donde yo pensaba que no tenía.
¿Has aprendido algo nuevo mientras lo hacías?¿Qué?
Este examen me ha puesto a prueba a la hora de controlar el tiempo e intentar organizarlo lo mejor posible.
¿Que te ha parecido trabajar con la pareja elegida?
Me ha parecido que hemos estado bastante bien en cuanto a trabajo, los dos hemos trabajado lo mismo y casi teníamos el mismo nivel de conocimientos.
¿Estaban ajustadas las preguntas a lo que habíamos trabajado en clase?
Las preguntas estaban totalmente ajustadas, ya habían sido trabajadas en clase, no había trampa.
¿Les dió tiempo,que quitarías/añadirías...
Nos faltó un poco de tiempo ya que no nos organizamos bien a la hora de hacer los ejercicios, nos reparamos mucho en uno de ellos.
Gracias a esta autoevaluación nos hemos dado cuenta de fallos tan garrafales que ni nosotros mismos sabíamos que podíamos cometer, pero que difícilmente cometeremos otra vez.
La verdad es que me ha parecido una buena manera de aprender de mis errores, es decir, gracias a esta prueba me doy cuenta de que tengo fallos en donde yo pensaba que no tenía.
¿Has aprendido algo nuevo mientras lo hacías?¿Qué?
Este examen me ha puesto a prueba a la hora de controlar el tiempo e intentar organizarlo lo mejor posible.
¿Que te ha parecido trabajar con la pareja elegida?
Me ha parecido que hemos estado bastante bien en cuanto a trabajo, los dos hemos trabajado lo mismo y casi teníamos el mismo nivel de conocimientos.
¿Estaban ajustadas las preguntas a lo que habíamos trabajado en clase?
Las preguntas estaban totalmente ajustadas, ya habían sido trabajadas en clase, no había trampa.
¿Les dió tiempo,que quitarías/añadirías...
Nos faltó un poco de tiempo ya que no nos organizamos bien a la hora de hacer los ejercicios, nos reparamos mucho en uno de ellos.
Gracias a esta autoevaluación nos hemos dado cuenta de fallos tan garrafales que ni nosotros mismos sabíamos que podíamos cometer, pero que difícilmente cometeremos otra vez.
jueves, 9 de noviembre de 2017
Temario de primero de bachillerato
Números reales.
Este curso hemos empezado con un tema que se ha machacado a lo largo de toda nuestra historia académica ,por lo que es un tema que hay que tenerlo bastante bien dominado.En primer lugar conoceremos cómo clasificarlos con un esquema visual que nos facilitará su aprendizaje.
Los números reales son aquel conjunto compuesto por los racionales e irracionales. Dentro de los racionales podemos encontrarnos a los naturales, que son aquellos números positivos y no decimales, a continuación se encuentran los números enteros que comprenden todos los números positivos y negativos no decimales y por último los racionales fraccionarios que consisten en todos los números decimales, periódicos. Por otra parte, tenemos los irracionales que son aquellos que presentan una infinita cantidad de decimales.
Notación científica
¿Qué es? Es simplemente una forma de facilitarnos la lectura y escritura de números con valores muy altos a través de una potencia de diez, es decir:
Como se puede ver en ejemplo, para expresar algún número muy pequeño solo debemos aplicar el mismo criterio que a los grandes con la diferencia de que la potencia será negativa. Cabe destacar que en este tipo de notación, en la parte entera del número no puede haber más de una cifra.
Sumas y restas en notación científica.
Para realizar estas operaciones es necesario que nuestras potencias de diez presenten el mismo exponente, sin importar que nuestra parte real del número supere más de una cifra. A continuación se opera como hemos acostumbrado:
Multiplicación y división
Para multiplicar dos números en notación científica simplemente multiplicamos los coeficientes que forman los números, luego copiamos la base y sumamos los exponentes.
Si ax10b es un número en notación científica y cx10d es otro número expresado en notación científica entonces el producto de estos dos números es:(a x 10b) · (c x 10d) = a·c x 10b+d
Entornos:
En este apartado del tema he pensado que lo mejor sería exponer un pequeño video que lo explicase ya que en su momento no puede entenderlo de una manera óptima por lo que no sabría si me estaría expresando de una manera adecuada al explicarlo con mis palabras. Como siempre recurrimos a nuestro querido unicoos ;).
Aproximaciones y errores
Aproximaciones
En ocasiones, ciertos números tales como π, √2, 5,675... dificultan el trabajo.
En estos casos usamos valores próximos a dichos números para simplificar los cálculos.
Es por ello que surgen los siguientes conceptos:
En estos casos usamos valores próximos a dichos números para simplificar los cálculos.
Es por ello que surgen los siguientes conceptos:
Aproximación por defecto o truncamiento
Consiste en eliminar las cifras a partir del orden considerado.
Aproximación por exceso
Se eliminan las cifras a partir del orden considerado, pero se aumenta en una unidad la última cifra que dejamos.
Redondeo
Es la mejor de las aproximaciones de las dos anteriores.
Se aumenta una unidad si el decimal útimo está comprendido entre 5 y 9.
Y se deja igual si está comprendido ente 1 y 5.
Y se deja igual si está comprendido ente 1 y 5.
Errores
Error absoluto
Es la diferencia, en valor absoluto, entre el valor real y la aproximación.
Error relativo
Es el cociente del error absoluto y error real.
domingo, 18 de junio de 2017
Opinión del curso
En esta entrada voy a intentar compartir mi experiencia a lo largo del curso en la asignatura de matemáticas.
Voy a empezar por el principio, trigonometría. En su momento me parecía un tema que no iba a terminar de comprender nunca pero ya a finales de curso, usándolo en física, fue cuando comprendí sus usos y lo comprensible que era esta tema...
Si no me equivoco, el segundo tema impartido en el primer trimestre fue el relacionado con los polinomios, en este apartado estudiamos la factorización de los mismos, a través de ruffini y otros métodos que se pueden encontrar en mi blog. En mi opinión fue una materia no dificil pero si que ha de ser trabajada para su completa comprensión.
A medida que pasaba el curso nos íbamos adentrando en uno de los asuntos que más suele costar a los alumnos, las ecuaciones. Impartimos de primer y segundo grado, completas e incompletas, inecuaciones, bicuadráticas y sistemas de ecuaciones. Este tópico es muy mecánico y a medida que vas empleando tus conocimientos aprendidos durante el curso y vas practicando le vas cogiendo el "tranquillo" al álgebra.
Aquí llega el tema que más me ha costado entender (todavía no lo comprendo del todo) de todo el curso, las funciones.
En este temario impartimos varias funciones como las rectas, parábolas, de proporcionalidad inversa, exponenciales y a trozos. La verdad es que me gusta el uso de las funciones pero no logro comprender su representación e identificación.
Voy a empezar por el principio, trigonometría. En su momento me parecía un tema que no iba a terminar de comprender nunca pero ya a finales de curso, usándolo en física, fue cuando comprendí sus usos y lo comprensible que era esta tema...
Si no me equivoco, el segundo tema impartido en el primer trimestre fue el relacionado con los polinomios, en este apartado estudiamos la factorización de los mismos, a través de ruffini y otros métodos que se pueden encontrar en mi blog. En mi opinión fue una materia no dificil pero si que ha de ser trabajada para su completa comprensión.
A medida que pasaba el curso nos íbamos adentrando en uno de los asuntos que más suele costar a los alumnos, las ecuaciones. Impartimos de primer y segundo grado, completas e incompletas, inecuaciones, bicuadráticas y sistemas de ecuaciones. Este tópico es muy mecánico y a medida que vas empleando tus conocimientos aprendidos durante el curso y vas practicando le vas cogiendo el "tranquillo" al álgebra.
Aquí llega el tema que más me ha costado entender (todavía no lo comprendo del todo) de todo el curso, las funciones.
En este temario impartimos varias funciones como las rectas, parábolas, de proporcionalidad inversa, exponenciales y a trozos. La verdad es que me gusta el uso de las funciones pero no logro comprender su representación e identificación.
miércoles, 26 de abril de 2017
Proporcionalidad inversa
Esta vez voy a repetir mi entrada de proporcionalidad inversa ya que la otra no me había salido bien, en este caso voy a recurrir a Fausto de nuevo, es una fuente inmensa de parábolas...
Para realizar esto, como el nombre de la función indica, se necesita invertir algo. En este caso se invierte un número (x) y a partir de ahí se le puede sumar o restar lo que se desea a dicha función. Espero que en esta entrada quede más claro.
Para realizar esto, como el nombre de la función indica, se necesita invertir algo. En este caso se invierte un número (x) y a partir de ahí se le puede sumar o restar lo que se desea a dicha función. Espero que en esta entrada quede más claro.
lunes, 24 de abril de 2017
domingo, 16 de abril de 2017
Parábolas y rectas
Parábolas y rectas
En estos últimos días antes de semana santa, estuvimos dando en clase un nuevo tema interesante que son las rectas y parábolas. Las parábolas ya las he publicado en una entrada, ahora toca hablar sobre las recta.La palabra recta se usa para dar cuenta de todo aquello o aquel que se dirige a un punto sin desviarse y que por lo tanto en su trayectoria no se inclina hacia los dos lados, no presenta ni curvas ni ángulos.Ya sabiendo lo que es, procedamos a aplicarlo en geogebra:
En esta imagen se puede mostrar la aplicación de dichas rectas, su función se resume en un número que multiplica a X que define la inclinación más otro que indica la posición en el eje X.
miércoles, 15 de marzo de 2017
Contenidos estudiados de álgebra
En esta ocasión traigo un pequeño repaso de
todo lo que hemos aprendido de álgebra:
Índice:
-Monomios: definición y resolución de ejercicios sencillos.
-Polinomios: operaciones,identidades notables, ruffini, teorema del resto y factorización.
-Ecuaciones: segundo grado,incompletas ,completas ,bicuadradas ,irracionales y sistemas.
-Inecuaciones.
-Monomios: definición y resolución de ejercicios sencillos.
-Polinomios: operaciones,identidades notables, ruffini, teorema del resto y factorización.
-Ecuaciones: segundo grado,incompletas ,completas ,bicuadradas ,irracionales y sistemas.
-Inecuaciones.
Monomios: son las expresiones más sencillas y
están formadas por una parte numérica llamada coeficiente (cuando es 1 se
suprime) y una parte literal formada por una letra elevada a un exponente
natural (o el producto de varias de estas potencias). De esta forma, las dos
expresiones anteriores se corresponden a monomios.
Así por ejemplo, en el monomio 15x2 , el coeficiente
es 15 y la parte literal es x2 .
En el monomio x3, el coeficiente es 1 y la
parte literal es x3 .
También se considerará como un monomio a aquel
que sólo tiene parte numérica. De esta forma, 8 por ejemplo, sería un monomio.
Cuando forma parte de otra expresión más compleja, como por ejemplo 2x + 8 ,
diremos que es el término independiente.
Dos monomios son semejantes si tienen la misma
parte literal:
- 8x2 , -5x2 , x2 son monomios
semejantes (todos tienen la misma parte literalx2)
- 3xy4, -2xy4 son monomios semejantes (todos
tienen la misma parte literal xy4 )
- x2 y 7x3 , no son semejantes ya que en el
primero su parte literal es x2 y en el otro x3 (son diferentes).
Aquí les dejo unos ejercicios como ejemplos.
Polinomios
Las expresiones algebraicas que se forman a
partir de la unión de dos o más variables y constantes, vinculadas a través de
operaciones de multiplicación, resta o suma, reciben el nombre de polinomios.
Para calcular la suma de los polinomios:
(4x4 - 2x3 + 3x2 - 2x + 5 ) + ( 5x3 - x2 + 2x
)
Basta sumar los términos de grados 3, 2 y 1 de
ambos polinomios y dejar el resto de los términos del primero como está.
Podemos indicar la suma de la siguiente forma
para verla mejor:
4x4 - 2x3 + 3x2 - 2x + 5
+ --- 5x3 --- x2 +2x
_____________________
4x4 + 3x3 + 2x2 + -----5
Por tanto: Para sumar dos o más polinomios se
suman los términos semejantes de cada uno de ellos.
Si en lugar de sumar dos polinomios se tratara
de restarlos, bastaría cambiar el signo a todos los términos del segundo y
sumar los resultados.
Para dividir polinomios:
Con los polinomios dividendo y divisor
ordenados de mayor a menor grado:
- Se divide el primer término del dividendo
entre el primero del divisor, dando lugar al primer término del cociente
- Se multiplica dicho término por el divisor y
se coloca debajo del dividendo con los signos contrarios, cuidando que debajo
de cada término se coloque otro semejante
- Se suman los polinomios colocados al efecto,
obteniéndose un polinomio de grado menor al inicial
- Se continua el proceso hasta que el resto ya
no se pueda dividir entre el divisor por ser de menor grado.
Normalmente se dividen polinomios con una sola
variable (x) tanto en el dividendo como en el divisor.
Multiplicación de polinomios
Para multiplicar dos polinomios se multiplican
los términos del primero por cada uno de los del segundo y se reducen los
términos semejantes.
R(x) = 5x3 + x - 1
S(x) = 2x2 - 1
R(x) · S(x) = (5x3 + x - 1) · (2x2 - 1) =
=(5x3) · (2x2) + (5x3) · (-1) + (x) · (2x2) +
(x) · (-1) + (-1) · (2x2) + (-1) · (-1) =
=10x5 - 5x3 + 2x3 - x - 2x2 + 1 = 10x5 - 3x3 -
2x2 - x + 1
En otras palabras esta técnica posibilita dividir o descomponer un polinomio algebraico de grado n, en un binomio algebraico, y luego en otro polinomio algebraico de grado n-1. Y para que esto sea posible se necesita saber o conocer por lo menos una de las raíces del polinomio único, con el propósito de que la separación sea exacta.
Identidades notables
Las identidades notables son varias expresiones algebraicas
Binomio al cuadrado
El binomio al cuadrado es una de las identidades notables más típicas y que a pesar de ello, muchas veces se resuelve mal.
Estas son las fórmulas que hay que aplicar para resolver una identidad notable de un binomio al cuadrado:
(a + b)2 = a2 + 2ab + b2(a − b)2 = a2 − 2ab + b2
Los términos que se elevan al cuadrado siempre van con un signo positivo mientras que el término que es igual al doble del primero por el segundo tendrá un signo que será positivo o negativo dependiendo del que haya en la identidad notable.
Ejercicios resueltos:
Ejercicios resueltos:
(x + 2)2 = x2 + 4x + 4(x – 2)2 = x2 – 4x + 4
Suma por diferencia
Cuando aprendemos la identidad notable de la suma por diferencia nos enseñan que es igual a la diferencia de cuadrados. Esto se resume en la siguiente fórmula:
(a + b) (a − b) = a2 − b2
Lo siguiente es ruffini.
El método o regla de Ruffini es un método que nos permite dividir un polinomio entre un binomio y además permite localizar las raíces de un polinomio para factor izarlo en binomios.En otras palabras esta técnica posibilita dividir o descomponer un polinomio algebraico de grado n, en un binomio algebraico, y luego en otro polinomio algebraico de grado n-1. Y para que esto sea posible se necesita saber o conocer por lo menos una de las raíces del polinomio único, con el propósito de que la separación sea exacta.
Se deben colocar todos los coeficientes del dividendo ordenados de mayor a menor grado y si falta el de algún grado intermedio colocar un 0.
Teorema del resto:
Teorema del Resto:
El resto de dividir el polinomio P(x) entre el monomio a x − es igual al valor numérico del
polinomio para a x = , es decir P(a). Para factorizar polinomios, he decidido no dejar explicación, sino publicar los siguientes vídeos:
Ahora viene el apartado que más me cuesta de todos, las ecuaciones.
En matemática se llama ecuación a la igualdad entre dos expresiones algebraicas, que serán denominados miembros de la ecuación. En las ecuaciones, aparecerán relacionados a través de operaciones matemáticas, números y letras (incógnitas).
-Para resolver ecuaciones de primer grado con
una incógnita, seguimos los siguientes pasos:
-Quitar paréntesis (si los hubiese)
-Quitar denominadores (si los hubiese)
-Transposición de términos: colocar los
términos con incógnita en un miembro y los que no tienen incógnita en el otro
miembro (para ello usamos la Regla de la suma)
-Agrupar términos: Sumamos en cada miembro los
términos semejantes (ver Suma de monomios)
-Despejar la incógnita: para ello usamos la
Regla del producto
-simplificar el resultado: en la mayoría de
ocasiones deberemos simplificar la fracción resultante
Ejemplos:
-Ecuación Completa: se dice que una ecuación de
segundo grado del tipo es completa
cuando los coeficientes b y c son
distintos de 0.
-Ecuación Incompleta: se dice que una ecuación
de segundo grado del tipo es incompleta
cuando alguno de los coeficientes b y c
son iguales a 0.
-Las ecuaciones de segundo grado incompletas
son aquellas en las que faltan las constantes b o c o incluso las dos, es
decir, que son igual a 0. Tenemos 3 tipos:
Cuando b=0: ecuacion de segundo grado
incompleta 2
Cuando c=0:ecuacion de segundo grado
incompleta 1
Cuando b = 0 y c = 0:ecuacion de segundo grado
incompleta 3
Aquí les dejo una ilustración para que quede
más claro:
Y ahora las completas:
Ecuaciones bicuadradas (de las más sencillas para mí).
Por ecuaciones bicuadradas nos referimos a las
ecuaciones de grado 4 que tienen la siguiente forma:
ax^4+bx^2+c = 0
Para resolver este tipo de ecuaciones, vamos a
hacer un cambio de variable:
t=x^2
Y sustituimos cada x^2 por una t quedando la
ecuación de la siguiente forma:
at^2+bt+c=0
Se resuelve mediante la fórmula de las
ecuaciones de segundo grado obteniendo dos soluciones que llamaremos t_1 y
t_2,estas ecuaciones son casi iguales que las de segundo grado con la
diferencia que hay que cambiar la variable.
Con radicales (no las controlo en estos momentos).
Aquí les dejo una información muy bien
explicada (para mí) de como resolverlas:
Método de Resolución
Vamos a explicar el método de resolución a través de un ejemplo:
√x−1−1=0
- Reordenamos la ecuación: aislamos la raíz en uno de los lados:
√x−1=1 - Elevamos ambos lados al orden de la raíz. Si la raíz es cuadrada, elevamos a 2; si es cúbica, elevamos a 3; si es de orden 4, elevamos a 4...
(√x−1)2=12 - Desarrollamos las potencias. En nuestro ejemplo, el signo radical desaparece y el cuadrado de 1 es 1:
x−1=1 - Si quedan raíces, vamos de nuevo al primer paso. Si no quedan raíces, resolvemos la ecuación:
x−1=1x=1+1x=2 - Comprobamos que todos los radicandos son positivos para las soluciones obtenidas:
Nuestro radicando es
x−1Sustituimos x = 2 :
x−1=2−1=1>0Si alguna de las soluciones hace que el radicando sea negativo, entonces no es una solución.
Si alguna de las soluciones hace que el
radicando sea negativo, entonces no es una solución.
Por si no les ha quedado claro, les adjunto un pequeño vídeo de nuestro querido "unicoos".
Ahora, pasemos con los sistemas:
Esta es una información que he encontrado por google que es muy buena, si les interesa la página, se llama: https://bitacoraed.wordpress.com
Método de sustitución
Es aconsejable en sistemas en los que aparecen coeficientes o .- Despejamos la de la primera ecuación:
- Sustituimos en la otra ecuación:
- Resolvemos la ecuación resultante:
- Para averiguar el valor de sustituimos el valor de en la expresión obtenida el el paso 1
Método de igualación
- Despejamos la misma variable de ambas ecuaciones
- Igualamos las dos expresiones anteriores
- Resolvemos la ecuación resultante
- Para calcular el valor de x sustituimos en cualquiera de las expresiones obtenidas en el paso 1
- Despejamos la misma variable de ambas ecuaciones
Método de reducción
Combinación lineal de ecuaciones : se multiplica una ecuación por ún número, la otra por otro número y se suman. La ecuación resultante de una combinación lineal es equivalente a las ecuaciones originales del sistema.
El método de reducción consiste en eliminar una incognita del sistema.- Vamos a eliminar la . Para ello multiplico la ecuación de arriba por 3 y la de abajo por 2:
- Sumando ambas ecuaciones desapacen las x y nos queda
- Para calcular x sustituimos en cualquiera de las ecuaciones originales. Sustituyendo en la primera nos queda
- Vamos a eliminar la . Para ello multiplico la ecuación de arriba por 3 y la de abajo por 2:
Y por último un tipo de sistema que es el no lineal:
Este es el proceso:
-En primer lugar se despeja una de las dos
incógnitas
-En segundo lugar ,con la incógnita despejada, se sustituye
-En segundo lugar ,con la incógnita despejada, se sustituye
-En tercer lugar se opera y se unen "peras
con peras y manzanas con manzanas"
-Y se realiza la ecuación de segundo grado
mediante su fórmula carácterística
-Por último con una de las incógnitas
despejadas se sustituye para averiguar la otra
Inecuaciones:
Una inecuación es una desigualdad que relaciona letras y números mediante las operaciones aritméticas. Las letras se llaman incógnitas. Las soluciones de una inecuación son los valores que pueden tomar las incógnitas de manera que al sustituirlos en la inecuación hacen que la desigualdad sea cierta.
Procedimiento para resolver una inecuación de primer grado con una incógnita.
• Quitar denominadores, multiplicando ambas partes de la inecuación por el mínimo común
múltiplo de los denominadores (propiedad 2 o 3).
• Quitar paréntesis. (propiedad distributiva).
• Transposición de términos, para conseguir una inecuación de una de las formas siguientes:
a ⋅ x < b , a ⋅ x ≤ b , a ⋅ x > b , o bien a ⋅ x ≥ b (propiedad 1)
• Despejar la incógnita. (Propiedad 2 o 3)
• Determinar la expresión analítica, por intervalos y gráfica de la solución.
Bueno, eso es todo, espero que esta publicación les ayude a aprobar mates ;).
Suscribirse a:
Entradas (Atom)